අධානයක පොදු සහතික පනු (උසස් පෙළ) විභාගය, 2001 අගෝස්තු கல்வீப் பொதுத் தராதரப்பத்திர(உயர் தர)ப் பரீட்சை, 2001 ஒகண்ற் General Certificate of Education (Adv. Level) Examination, August 2001				
රසායන විදහා	02			
இரசாயனவியல்				
Chemistry II				
පැ තුහයි / ගුණැ	மணித்தியாலங்கள் / Three hours			
Important :	This question paper consists of 14 pages and has three parts A, B as			
*	The time allotted for all three parts is three hours.			
*	Use of calculators is not allowed.			

			PART A — STRUC				
			Answer all four questions. Each	h question carries 10 marks.			
1.	(a)	Q and R are two non-transition elements in the same group belonging to two consecutive periods					
	•		he periodic table. They form the comp	bounds \mathbf{KQ}_2 and \mathbf{KQ}_3 .			
		(i)	Identify Q and R below:				
			Q =;	R =			
		(ii)	Indicate below all the stable oxidatio	n states shown by O and R.			
			Indicate also the chemical formula of an state of each element. (N.B.: - Against each such chemical formula f	illustrative compound for each such			
			must also be correctly give				
			Q:		····:		
					18 (2)		
			R:		······································		
					22 08		
					(4.0 marks)		
	<i>(</i> L)	Denus	in the relevant boxes below the dot an	d arous disagrams of the molecules			
			ing valence electrons of all atoms.	d cross diagrams of the molecules	N ₂ O ₄ and O ₃		
		(i) 1	N ₂ O ₄	(ii) O ₃			
				to the state of th			
					- 10		
			4 A 2				

(02) Chemistry II G.C.E.(A/L)2001	Index No.:		
(c) A, B and C are experimental observa	tions. Given against each of them are some explanation ations. Of these explanations given for each observation		
Evaluate these explanations by			
(i) marking in the appropriate box	a [1] if, in your opinion, the explanation is valid.		
(ii) marking in the appropriate box	a X if, in your opinion, the explanation is invalid.		
Keep the appropriate box empty as	if you are unable to evaluate the validity of the explanation		
•	3 marks each will be awarded. 0-2 marks each will be deducted. narks will be awarded or deducted.		
	s for this part (c) will be zero (0).		
	X		
Experimental Observation	Students' Explanation		
A- When a beam of α-particles falls on a thin gold plate, most of the α-particles pass undeflected through the plate.	The gold plate contains spaces which are large compared with the size of α-particles.		
indefrected through the plate.	The gold plate is non-continuous.		
	The path of α-particles is always linear.		
B- A paddle wheel placed in the path of cathode rays rotates.	Cathode rays are negatively charged.		
	Cathode rays have particle-like properties.		
	Material of the paddle wheel is continuous.		
C- The electronic emission spectrum of hydrogen consists of several series of lines; in each series, the separation	There are definite energy levels for the electrons in the H-atom.		
between the lines decreases as the	The energy corresponding to each line in		
frequency increases.	the spectrum is equal to the energy of an electronic level of hydrogen.		
frequency increases.			

rite
mything
this
olumn

Do not write anything in this column

		On complete thermal decomposition in an inert environment, a 1.52 g of Cr_2O_3 , 0.72 g of H_2O and 0.28 g of N_2 as the only (Relative atomic masses: $\text{H} = 1$; $\text{N} = 14$; $\text{O} = 16$; $\text{Cr} = 52$)	2.773.1730.000.000.000
		(i) Deduce the empirical formula of X.	
		-	
			-512
			10.4
;			25.84
		1. /*	
			Arg Salas
() () () () () () () () () ()			
,	- H.		
	, /::	One male of V contains two males of Co Command V does not	contain U O ma
	, (ii	One mole of X contains two moles of Cr. Compound X does not Identify below the cation and anion present in X.	Contain H ₂ O in
	(iii)	write below the chemical formula of X.	
,	(111)	write below the chemical formula of A.	
	•		
			(3.0
~ 4	(b) (i)	Z is a metallic element.	4140
		Oxalate $(C_2O_4^{2-})$ ions are converted to CO_2 by ZO_4^- ions in an	acidic medium
ŧ")		ZO ₄ ions are converted to ZO ⁺ ions during this reaction.	
		Write below the relevant balanced ionic half reactions.	
1-6			
14.6 14.5 14.5			
$\int_{0}^{\infty} 1^{n} dx$			
	(ii)	Write below the stoichiometry of the above reaction between C ₂	O_4^2 and ZO_4
	j:	$C_2O_4^{2-}$: ZO_4^{-} =:	
			(2.0 1
		132	
Find more	e at: c	hemistrysabras.weebly.com	[see p
twitter:: Cl	nemis	trySabras	

3	(02) Chemistry II G.C.E.(A/L)2001	
)	G.C.E.(A/L)2001	

(c)

Index No.:

Complete the passage below correctly by filling each of the 26 blank spaces with the most appropriate word. (N.B.: Each blank space should be filled with one word only.)

Do not write anything in this column

THE BEHAVIOUR OF MATTER

THE BEHAVIOUR OF MATTER
Solids, liquids and gases are commonly referred to as the three
affected by (small) changes in pressure and temperature. Solids differ from liquids and
gases by the presence of a definite; constituent particles of a solid are
also able to about mean positions.
According to the molecular kinetic theory of gases, gaseous molecules are in constant
collisions occur. Gases that behave in this manner are referred to as ideal gases. Characteristic
properties of ideal gases are the absence of between molecules and the absence
of
to very values. The variation of the distribution of
molecular speeds of an ideal gas with molar mass and
The pressure, p, of an ideal gas can be calculated using the expression $3pV = mNc^2$
where m is the mass of one
At a given temperature, the pressure of the gas does not vary with
Therefore the
a given temperature. Although this speed with temperature, it is incorrect
to say that the speeds of all molecules in the system are simultaneously
gases do not usually behave as ideal gases. The behaviour
of such gases approximates to the behaviour of ideal gases at low
behaviour can be depicted by a plot of compressibility factor (Z) against
$Z = \frac{pV}{nRT} - 1.0$ gas (5.0 marks)

133

Find more at: chemistrysabras.weebly.com twitter: ChemistrySabras

[see page six

(a) A compound X of molecular formula $C_8H_{18}O_6$ contains hydroxyl groups. When X is reacted with 3. excess ethanoyl chloride, the product obtained has a relative molecular mass of 378.

Calculate the number of hydroxyl groups in X. (Relative atomic masses : C = 12; H = 1; O = 16; CI = 35.5)

(2.5 marks)

Three isomeric amines A, B and C (molecular formula $C_4H_{11}N$) on reaction with $NaNO_2/HCI$ (b) produces three alcohols D, E and F (molecular formula $C_4H_{10}O$) respectively. Although D reacts quickly with Lucas reagent, E and F do not react with Lucas reagent at room temperature. D is not easily oxidized. E and F can be oxidized to G and H respectively. Both G and H form precipitates with Brady's reagent and also reduces Fehling's reagent. Write possible structures (see instruction box in page 1) for A, B, C, G and H in the relevant boxes below.

(c) The intermediate represented by the resonance structures,

occurs in a reaction leading to the synthesis of toluene.

(I) Write the reactants and reagents that give this intermediate.

An AtCl3 & CH3 Cl

(II) Write below a mechanism to explain the formation of the intermediate. (3.0 marks)

[see page seven

more at: chemistrysabras, wee

r: ChemistrySabras

(02)	Chemistry	IJ
CC	E.(A/L)200	1

Do not write anything in this column

- (ii) Methyl chloride is formed as a major product, when equimolar amounts of CH₄ and Cl₂ are reacted in the presence of light.
 - (I) Write two steps in the mechanism of the above reaction in which methyl chloride is a product. (Methyl chloride should be a product in each of these two steps.) Indicate electron movements. (1.0 mark)

H-C: + ci-C1 -> CH3C1 + C1

(II) Ethane is also formed but only in a very small quantity in the above reaction. Explain this. (1.0 mark)

Ethane is produced in chain termination reaction. Here free radicals of CH3 & CH3 Combine to gether to form C2Hb. CH3 CH3 CH3

(a) (i) A saturated non cyclic hydrocarbon, C_nH_m , has one asymmetric centre. Write the smallest possible numbers for n and m.

(ii) Write the structures (see instruction box in page 1) of the structural isomers of this hydrocarbon. (2.5 marks)

(b) (i) Without the use of catalytic hydrogenation, show how you would convert CH₃CH₂C≡CH → CH₃CH₂CH₂CH₃ utilising not more than three steps. (ii) Without the use of CN⁻ ion as a reactant, show how you would convert
 CH₃CH₂CH₂OH → CH₃CH₂CN utilising not more than five steps.

(2.5 ma

(c) Consider the reaction scheme represented through the boxes below :-

- (i) Write the structures (see instruction box in page 1) of the compounds corresponding to A, B, C, D and E in the relevant boxes.
- (ii) Write the reagents corresponding to L, M, N, O, P and Q. Amongst these reagents the only organic compound allowed is 2-propanone.

(5.0 marks)

Find more at: chemistrysabras.weebly.com twitter: ChemistrySabras

[see page nin

ලී ලංකා විහාග දෙපාර්කමේන්තුව / මූ හාඛකයේ ප්රීඩකයේ නිකාශක්ෂකයේ / Department of Examinations, Sri Lanka

PART B — ESSAY

Answer two questions only. Each question carries 15 marks.

5. (a) Standard molar enthalpies of neutralisation (ΔH°) obtained at 25°C for some acids with NaOH in aqueous solution, are given below:

acid	ΔH°/kJ mol ⁻¹		
HCI	- 57		
HNO ₃	- 57		
C ₂ H ₅ COOH	- 51		

- (i) Provide reasons for the above observations.
- (ii) Deduce the standard molar enthalpy of dissociation (ΔH°) at 25°C of
 - (I) water
 - (II) propanoic acid (C₂H₅COOH) in water.

(4.0 marks)

(b) The following data are provided:-

heat source	relative molecular mass	standard boiling point/°C	standard molar enthalpy of combustion, ΔH°/kJ mol ⁻¹
C ₃ H ₈ (g)	44	- 42	- 2,200
C ₈ H ₁₈ (<i>l</i>)	114	+ 126	- 5,130

- (i) Under standard conditions, 1.0 kg each of propane and octane is separately subjected to complete combustion. Calculate, in each case
 - (I) the heat energy that is evolved.
 - (II) the mass of gaseous CO2 that is produced.
- (ii) Using your results from (i) above, deduce, giving two reasons, which of the two compounds would be more advantageous as a heat source.

(5.0 marks)

[see page ten

(c) An insecticide X is soluble in chloroform as well as in water. By shaking an aqueous solution of X with chloroform, some of the X can be extracted into the chloroform layer.

1.0 dm³ of an aqueous solution of 0.18 mol dm⁻³ X was extracted with a total volume of 1.0 dm³ of chloroform at 25°C. Two alternate extraction procedures (p) and (q) described below were used for this purpose:

- (p) Extraction with 1.0 dm³ of chloroform in one step: here the chloroform layer is found to contain 0.144 mol X.
- (q) Extraction with two successive 500.0 cm³ portions of chloroform in two steps.
- (i) Write down an expression for the partition coefficient, K, for X between chloroform and water.
- (ii) Calculate the value of K at 25°C.
- (iii) Hence, calculate the total number of moles of X extracted in the two 500.0 cm³ portions of chloroform in procedure (q).
- (iv) Deduce which of the two extraction procedures, (p) or (q), is more efficient for the extraction of X from an aqueous solution into chloroform.
- (v) The molar enthalpy of solution of X in water and chloroform are -2.5 kJ mol⁻¹ and -1.5 kJ mol⁻¹ respectively.
 Using this data, show, with reasons, how you would change the temperature, to make the extraction more efficient.

(6.0 marks)

6. (a) A glass vessel of volume 5.0 dm³ is filled with a gaseous compound P, which behaves ideally. At 27°C, the pressure of the gas inside the vessel is 1.995 × 10⁵ N m⁻².

At temperatures above 100°C, P dissociates yielding the following equilibrium:-

$$P(g) \longrightarrow Q(g) + R(g)$$

When the vessel containing P at 27° C is heated to 127° C, the pressure inside the vessel reaches a constant value of 4.656×10^{5} N m⁻². The volume of the vessel is unchanged on heating.

- (i) Calculate to the nearest first decimal place, the total number of moles of gas present in the vessel under each of the following conditions:-
 - (I) at 27°C
 - (II) when equilibrium is reached at 127°C.
- (ii) Hence calculate the equilibrium constant, K_p , for the above equilibrium at 127°C.
- (iii) An inert gas Z is then introduced into the vessel.

When the system thereafter reaches equilibrium again at 127°C, the pressure inside the vessel is found to be $6.651 \times 10^5 \text{ N m}^{-2}$.

Obtain the partial pressures and mole fractions of P,Q, R and Z under these conditions.

N.B.: State the assumptions, if any, you make.

(7.5 marks)

Two volatile liquids A and B form ideal solutions with each other at all compositions One such solution begins to boil at a temperature of 68°C under an external pressure of I standard itmosphere.

The mole fraction of A in the liquid phase of this boiling solution is 0.76 while te mole fraction of B in the vapour phase of the same solution is 0.18.

The saturated vapour pressure of pure A is greater than that of pure B at all terperatures.

At 68°C, the saturated vapour pressures of pure A and pure B are PA and PB repectively

1 standard atmosphere can be taken as $1.0 \times 10^5 \, N \, m^{-2}$

- (i) Explain the ideal behaviour of a binary mixture of A and B in terms of inter-miceular interactions.
- (ii) Calculate (in units of pascal) the vapour pressures P_A and P_B of A and Brespectively in the above mentioned solution boiling at 68°C. State the assumption that you rake.
- (iii) Write down the mathematical relationship between PA and PA at 68°C.
- (iv) State, giving reasons, which of the pure liquids (A or B) will have a standard soiling point higher than 68°C.
- (v) Sketch the temperature vs composition diagram for the A/B system under n external pressure of one standard atmosphere and label it fully.
- (vi) Mark clearly the following on the above diagram:
 - (I) the temperature 68°C
 - (II) the compositions of the liquid and vapour phases in equilibrium at 68°C.
- (vii) If the boiling of the liquid is continued, state what changes you would exect in
 - (I) the mole fraction of A in the liquid.
 - (II) the boiling point of the liquid.

Give reasons for your answers.

(7.5 marks)

L and M are two metals which form only divalent cations. At a temperature of 25°C, a piece of L was placed in an aqueous solution of MSO₄. Deposition/precipitation of the metal M and dissolution of the metal L in the solution were observed.

The standard electrode potential (E°) of one of these two metals is -1.23 V and that of the other metal is -2.12 V at 25°C.

- Write the equation for the chemical reaction consistent with the above observations.
- (ii) Write the oxidation and reduction half reactions relevant to the chemical reaction corresponding to (i) mentioned above.
- (iii) The reaction in (i) above is the nett cell reaction that occurs during the discharge of an electrochemical cell. Using standard notation, write-down the electrochemical cell considering it to be in its standard state.
- (iv) Calculate the electromotive force (e.m.f.) at 25°C of the electrochemical cell mentioned in (iii) above

(3-5 marks)

The following type of electrical circuit (with electrodes P and Q) was used in an electrolytic method to deposit a layer of pure Cu metal on a rod of carbon. Neither P nor Q is Cu.

Find more at: chemistrysabras.weebly.com twitter: ChemistrySabras

- Identify in which of the two electrodes (P or Q), Cu will be deposited, stating also wheth (ii)
- Suggest i suitable electrolyte that can be used as Z.
- (iii) Write down the ionic half-reaction that initially takes place at the cathode.

(2.5 mark

(c) At 25°C, an aqueous solution of 0.1 mol dm⁻³ AgNO₃ is slowly added into an aqueous solution whi is 0.01 mol dm⁻² with respect to the salt NaX and 0.01 mol dm⁻³ with respect to the salt NaY. Here, X and Y are two halide ions.

The solubility products of the two silver halides in water at 25°C are given below :-

 $1 \times 10^{-10} \text{ mol}^2 \text{ dm}^{-6}$ AgY

 $1 \times 10^{-18} \text{ mol}^2 \text{ dm}^{-6}$

- Deduce vhether AgX or AgY will be precipitated first. At the intant when the second silver halide just begins to precipitate, calculate the remaining concentraion of the halide ion which was precipitated first. (iii)
- State the assumption that is essential to carry out the above calculations.

(4.5 marks)

(d) In an experiment where the effect of Fe3+(aq) concentration on the rate of the reaction

2 Fe³⁺(iq) + 2
$$I(aq) \longrightarrow 2$$
 Fe²⁺(aq) + $I_2(aq)$
ed, reacion mixtures

is studied, reaction mixtures are prepared by mixing reagents as given in the

	Boiling	Tube A	g reagents as given in	the following table:
Experiment	Water/cm ³	0·1 mol dm ⁻³	Boiling	g Tube B
No.		Fe(III) solution/cm ³	1.0 mol dm ⁻³	0.0005 mol dm ⁻³
			KI solution/cm ³	Na ₂ S ₂ O ₃ solution
2	-	25.0	10.0	containing starch/cm
3	5.0	20.0	10.0	15-0
4	15.0	15.0	10-0	15-0
5	20-0	10-0	10.0	15.0
Why is an		5.0	10.0	15.0
15 Starc	n used in thi	s experiment?	30 g 31 g 5	15.0

- Why is starch used in this experiment? (ii)
- How is the rate of the reaction corresponding to a given Fe³⁺(aq) concentration measured? (iii)

(4.5 marks)

[see page thirter

PART C - ESSAY

Answer two questions only. Each question carries 15 marks.

3.	(a)	M is a first row d block element	t. It shows the highest stable oxid	dation state in MO ₄ .
		(i) Write the complete electro	onic configuration of M.	
		(ii) Identify M.		
		(iii) Write the stable lowest or	xidation state of M in an aqueous	s solution.
		(iv) Write the reagents required in (iii).	to convert MO ₄ to a species with	th the oxidation state given by you
		(v) Write one important use o	of M.	(3.6 marks)
	(b)	b) Write the products formed when	each of the following compounds	reacts with H ₂ O:
		(i) CaC ₂ (ii) Mg ₃ N	I ₂ (iii) BiCl ₃	(iv) AlH ₃ (2·4 marks)
	(c)	c) An aqueous solution contains A13	+, Zn2+ and Mg2+ as the only me	etal ions.
		Using solutions of NH ₄ OH, NH ₄ Cl each of these metal ions in the al		would you show the presence of
			· ·	(3·0 marks)
	(d)	d) When 0.92 g of a finely powdered temperature, 0.48 g of a mixture of Calculate the mass percentage of	containing CaO and MgO only wa	3
		(Relative atomic masses : $C = 1$	2; O = 16; Mg = 24; Ca =	40) (3.0 marks)
	(e)	e) Deduce the shape of each of the	following species and name these	shapes.
		(i) PCl ₄ (ii) PCl ₅	(iii) PCI ₆	(3-0 marks)
).	(a)	i) (i) Write names and the correspo	onding chemical formulae of the allot	tropic forms of the element oxygen.
			quations for all the possible reaction urnt in an equimolar gaseous mix Mg (III) Al	
		(N.B.: 0.2 marks will be 0-1 marks will be However the mini (I) CaO (II)	2 3	er; swer;
		(IV) Bi_2O_3 (V)	SO ₂ (VI) NO ₂	(5.7 marks)
	(b)	There is 2.0×10^{-4} mol of oxyger	n dissolved in 1 dm ³ of water at	• 11 10 200 400 •
			gen content of the above water in	
		•	exygen of water in a pond is an in-	
		(iii) Chlorine gas can be used to a	disinfect drinking water. Suggest as	n alternative gas for this purpose. (3.0 marks)

[see page fourteen

10

Find more at: chemistrysabras.weebly.com twitter: ChemistrySabras

- (c) A 200·0 cm³ portion of a water sample was reacted with excess manganese(II) sulphate and all KI. After shaking, it was kept for 10 minutes and then acidified. The liberated I₂ was titrated with the control of Na₂S₂O₃.
 - (i) Write balanced chemical equations for the reactions which occur in the above procedure
 - (ii) Calculate the dissolved oxygen in the water sample in units of mg dm⁻³ if the volume of 0.01 mol dm⁻³ Na₂S₂O₃ consumed in the titration was 20.0 cm³.

 (Relative atomic mass of oxygen = 16)
 - (iii) State two important steps you should take to minimize errors in the above procedure for determined dissolved oxygen.

(6.3 mark

- 10. (a) (i) Describing the necessary conditions clearly and using balanced chemical equations, state essential steps involved in the manufacture of nitric acid by Ostwald method.
 - (ii) State two possible harmful effects of each of the gaseous products formed during the proce referred to in (i), if leaked accidentally to the environment. (Details not required).
 - (iii) State briefy three ways in which nitric acid can harm the environment if leaked accidentally a lake.

(8:0 marks

(b) A commercial fertilizer sample contains urea and ammonium nitrate.

In a laboratory experiment, 0·16 g of this sample was heated with excess 4·0 mol dm⁻³ NaGH in a flas. The liberated gas was absorbed in 50·0 cm³ of 0·1 mol dm⁻³ HCl. The remaining HCl was back titrate with 0·1 mol dm⁻³ NaOH. The volume of 0·1 mol dm⁻³ NaOH required for this titration was 25·0 cm

The remainder of the solution in the flask was then heated with aluminium powder until bubbling stopp. Here, too, the gas liberated was absorbed in another 50.0 cm³ of 0.1 mol dm⁻³ HCl; the remain HCl was back titrated with 0.1 mol dm⁻³ NaOH. For this titration, the volume of 0.1 mol dm⁻³ NaOH required was 40.0 cm³.

- (i) Write down balanced chemical equations for all the reactions encountered above.
- (ii) Using the above data, calculate the mass percentages of urea and ammonium nitrate present the commercial tertilizer sample.
 (Relative atomic masses: H = 1; C = 12; N = 14; O = 16)

(7.0 ma